Pre-Physician Assistant Certificate
The pre-physician assistant post-baccalaureate program is designed to allow career changing students the opportunity to complete core course requirements needed for admission to physician assistant (PA) programs. The Pre-PA program meets most foundational requirements for physician assistant graduate programs in the Chicago area, though students are strongly advised to confirm the admission requirements of the graduate programs in which they are interested before enrolling to ensure that the SPS program fulfills their needs.
Pre-PA students complete courses with Northwestern curriculum and faculty, which offers students the opportunity to build a deep and strong science foundation. Pre-PA coursework is primarily offered in evening and weekend classes, and can be completed in 15 or 21 months, depending on the student's needs.
This program is designed for career changers and students who have not completed the core coursework needed to apply to PA programs. Students who need only some of these courses should consider the pre-physician assistant completion program. Students who have already completed the course requirements for master’s programs for PAs may consider the Advanced Studies in Biology for the Health Professions certificate program, or designing a specialized post-baccalaureate certificate to meet their needs.
START MY APPLICATIONRequest Information ATTEND AN INFORMATION SESSION
Prepare for top PA programs with a rigorous, comprehensive curriculum
About the Pre-Physician Assistant Certificate
- Transfer Credit Policy for Pre-Physician Assistant
- Pre-Physician Assistant Tuition
- Admission for Pre-Physician Assistant
- Prephysician Assistant Registration Information
- Pre-Physician Assistant Sample Course Plans
- Pre-Physician Assistant Pre-Health Professional Student Group
- Find out more about the Pre-Physician Assistant Certificate
Pre-PA Program Notes
While Northwestern University’s programs are designed to align with core sequences required for medical, dental, veterinary, and related professional schools, students should familiarize themselves with the admission requirements for desired institutions as they choose which program aligns best. Northwestern University’s policy on awarding credits states that credit is awarded in units, rather than credit hours, on student transcripts. Courses are offered over a ten-week period and are assigned 1.0 unit of credit. One unit of credit is equivalent to four quarter hours, which is equivalent to 2.67 semester hours. Some institutions will round up to 3 semester hours while others will not, so it is imperative that students know the requirements of the institutions to which they intend to apply.
Transfer Credit Policy for Pre-Physician Assistant
Students in the pre-physician assistant post-baccalaureate certificate program may transfer up to eight semester hours, or twelve quarter hours of academic credit. A transcript and grade of B or better are required for transferred courses in the program. Courses audited or taken with the pass/no credit option cannot be applied toward a certificate program. Courses earned for a bachelor's degree at SPS may not be applied retroactively toward certificate requirements. Students who have completed up to two courses as a student-at-large may apply for a certificate and ask that those courses be included in the certificate. If students complete additional courses (beyond two) as a student-at-large, a petition to the Student Affairs Committee requesting an exception to policy should be submitted.
Pre-Physician Assistant Tuition
Post-baccalaureate students at Northwestern's School of Professional Studies pay per course. For more information about financial obligations and tuition, please visit the tuition page.
Admission for Pre-Physician Assistant
In addition to completing an online application, you'll also need to submit a few supplemental materials. A list of requirements for admission including application deadlines and tips on how to apply can be found on the admission page.
Pre-Physician Assistant Registration Information
Whether you're a first-time registrant or current and returning student, all students register using our online student registration and records systems. Important information about registering for courses at SPS, including registration timelines and adding or dropping courses in which you are already enrolled, can be found on the registration information page.
Pre-Physician Assistant Sample Course Plans
Review sample course plans for the pre-PA program offered by Northwestern University School of Professional Studies.
Pre-Physician Assistant Pre-Health Professional Student Group
Learn how students support one another through forums, resources and social networks on the pre-physician assistant pre-health professional student group page.
Find out more about the Pre-Physician Assistant Certificate
Program Courses: | Course Detail |
---|---|
Molecular Biology <> BIOL_SCI 201-CN | This course is part of the four-course introductory biology
sequence. Students will learn about the basics of molecular
biology, including the structure of macromolecules, DNA
replication, transcription, and translation and the mechanisms by
which these processes are regulated. Students will also learn
current biotechnology methods used to study molecular biology. View BIOL_SCI 201-CN Sections |
Cell Biology <> BIOL_SCI 202-CN | This course is part of the four-course introductory biology sequence. The cell biology course covers mechanisms the cell uses to compartmentalize and transport proteins, to move, to regulate growth and death, and to communicate with their environments. This course should be taken concurrently with BIOL SCI 232.
Credit not allowed for both BIOL SCI 219 and BIOL SCI 202. Students
who have previously completed BIOL SCI 219 should not register for
this course.
View BIOL_SCI 202-CN Sections |
Genetics and Evolution <> BIOL_SCI 203-CN | Fundamentals of genetics and evolution. From the rules of
heredity to the complex genetics of humans, the methods and logic
of genetics as applied to inheritance, development, neurobiology,
and populations. The process and tempo of evolution, from natural
selection to speciation, emphasizing how genetics plays a critical
role. View BIOL_SCI 203-CN Sections |
Cellular and Molecular Processes Lab <> BIOL_SCI 232-CN | This is the first course in a three-quarter sequence of introductory biology laboratory. The course is designed to provide students with an authentic laboratory experience that investigates relevant scientific research and teaches scientific inquiry skills such as experimental design, writing research proposals, data collection, data analysis/interpretation, and the presentation of results. The experimental model revolves around atherosclerosis and macrophage phagocytosis of apoptotic cells. Students will learn and become proficient at various cell and molecular biology techniques. This course should be taken concurrently with BIOL SCI 202. Credit not allowed for both BIOL SCI 221 and BIOL SCI 232. Students who have previously completed BIOL SCI 221 should not register for this course. View BIOL_SCI 232-CN Sections |
Genetics and Molecular Processes Lab <> BIOL_SCI 233-CN | This is the second course in a three-quarter sequence of
introductory biology laboratory. The course is designed to provide
students with an authentic laboratory experience that investigates
relevant scientific research and teaches scientific inquiry skills
such as experimental design, writing research proposals, data
collection, data analysis/interpretation, and the presentation of
results. The experimental model revolves around aggregate prone
proteins in nematodes and how RNA interference (RNAi) can be used
to affect protein folding and the clearance of protein aggregates.
Students will learn and become proficient at various cell and
molecular biology techniques. View BIOL_SCI 233-CN Sections |
Investigative Lab <> BIOL_SCI 234-CN | This course is the culminating life-science lab experience in
the biology lab sequence. Students design and generate reagents
that can be used in larger experiments. The topic varies from year
to year, but typically revolves around the sub-cloning of a
specific gene fused to a reporter for detection. View BIOL_SCI 234-CN Sections |
Biochemistry <> BIOL_SCI 308-CN | This course covers basic concepts in biochemistry, emphasizing
the structure and function of biological macromolecules,
fundamental cellular biochemical processes, and the chemical logic
in metabolic transformations. View BIOL_SCI 308-CN Sections |
Human Physiology <> BIOL_SCI 310-CN | An exploration of the functions of the human body at the tissue, organ, and organ system level. Emphasis on homeostatic mechanisms and interdependence within organs and organ systems and the influence of modulatory systems. Topics will include, but are not limited to: nervous, cardiovascular, respiratory, and renal systems. Prerequisite: CHEM 131 View BIOL_SCI 310-CN Sections |
Human Anatomy <> BIOL_SCI 313-CN | This course is an introduction to human anatomy. Topics include: system approach to anatomical organization; sections of the body; musculoskeletal and nervous systems; embryology development. Lectures are supplemented by selected prosections of human cadavers and dry exercises using bones, models, and computer animations. Prerequisite: BIOL SCI 165, 170, or equivalent course. View BIOL_SCI 313-CN Sections |
Human Anatomy <> BIOL_SCI 313-DL | This is an online course on human anatomy, focusing on
morphology and function. It follows both a regional and systems
approach. All course content, activities, and assessments will be
online learning activities and assessments. The course will also
have a broad emphasis on clinical application that is applicable to
all health care professions. The course covers gross anatomy of the
human body; therefore, images of human cadavers will be presented
in your textbook, as well as in other course resources. Readings
are assigned from the Marieb, Wilhelm and Mallatt text.
Prerequisite: BIOL SCI 165, 170, or equivalent course. View BIOL_SCI 313-DL Sections |
Regional Human Anatomy Lab <> BIOL_SCI 317-CN | This is a lab course utilizing prosections and demonstrations of
human cadavers. It is an advanced anatomy course examining the
details of human body systems. Topics include: Body wall and
cavities, contents and features of the thorax and abdomen (cardiac,
pulmonary, and gastrointestinal systems), pelvis (genito-urinary
system), spinal cord and back, innervation and blood supply of the
upper and lower limbs, cranial cavities and contents, cranial
nerves and blood supply of the head and neck. The majority of the
coursework will be done in the cadaver lab, with limited lectures
to introduce topics. The lab work will be guided by a lab workbook,
handouts and instructor demonstrations. Models, bones (skeletal
materials), skulls, and medical images will supplement the cadaver
prosections. Lab work will be assessed by the weekly lab
assignment, three practical quizzes and a written final exam. A
research project will be assigned to allow the student to bridge
their knowledge of lab anatomy with more clinical concepts.
Students are expected to follow all lab safety guidelines including
the cadaver lab dress code; also students should show respect for
the cadavers at all times. View BIOL_SCI 317-CN Sections |
Microbiology <> BIOL_SCI 328-CN | This course provides an introduction to bacteria and viruses
with an emphasis on their impact on human health and society.
Topics covered include bacterial and viral morphology/structure,
physiology, metabolism, basic replication, and genetics. Practical
applications of research in microbiology are explored, including
genetic engineering and biotechnology. We will also discuss the
impacts of microorganisms on human health include a discussion of
pathogenesis, the human microbiome, and current challenges
regarding antimicrobial resistance. Students have an opportunity to
explore current topics in microbiology of interest. View BIOL_SCI 328-CN Sections |
Quantitative Problem Solving in Chemistry <> CHEM 110-CN | Solution strategies for traditional word problems and their application to basic chemistry quantitative problems: dimensional analysis, chemical equations, stoichiometry, limiting reagents View CHEM 110-CN Sections |
Fundamentals of Chemistry I <> CHEM 131-CN | Quantum mechanics, electronic structure, periodic properties of the elements, chemical bonding, thermodynamics, intermolecular forces, properties of solids and liquids, special topics in modern chemistry. This course is required to be taken concurrently with CHEM 141-CN Fundamentals of Chemistry Lab I. Additionally, while the material in the inorganic chemistry lecture and lab courses is intended to be linked, students should not expect the lecture and lab content to always align. Prerequisite: completion of CHEM 110-CN (grade of C- or better), or current enrollment in CHEM 110-CN. View CHEM 131-CN Sections |
Fundamentals of Chemistry II <> CHEM 132-CN | Solutions and colligative properties, chemical equilibrium, aqueous solution equilibria, chemical kinetics, metals in chemistry and biology, oxidation-reduction reactions and electrochemistry, special topics in modern chemistry. This course is required to be taken concurrently with CHEM 142-CN Fundamentals of Chemistry Lab II. Additionally, while the material in the inorganic chemistry lecture and lab courses is intended to be linked, students should not expect the lecture and lab content to always align. Prerequisite: completion of CHEM 131-CN and CHEM 141-CN (grade of C- or better), or current enrollment in CHEM 131-CN/CHEM 141-CN. View CHEM 132-CN Sections |
Fundamentals of Chemistry Lab I <> CHEM 141-CN | Chemical analysis of real samples using basic laboratory techniques including titration, colorimetric analysis, density measurements, and atomic spectroscopy. Planning, data collection, interpretation, and reporting on experiments. Credit for this course is 0.34 units. This course is required to be taken concurrently with CHEM 131-CN Fundamentals of Chemistry I. Additionally, while the material in the inorganic chemistry lecture and lab courses is intended to be linked, students should not expect the lecture and lab content to always align. Prerequisite: completion of CHEM 110 (grade of C– or better), or current enrollment in CHEM 110-CN. View CHEM 141-CN Sections |
Fundamentals of Chemistry Lab II <> CHEM 142-CN | General Chemistry Lab 2 is a laboratory course in which techniques applied to materials science and nanotechnology, acid-base chemistry, and chemical kinetics will be employed. Major objectives involve work involving planning, data collection, interpretation, and reporting on experiments. Credit for this course is 0.34 units. This course is required to be taken concurrently with CHEM 132-CN Fundamentals of Chemistry II. Additionally, while the material in the inorganic chemistry lecture and lab courses is intended to be linked, students should not expect the lecture and lab content to always align. Prerequisite: completion of CHEM 131-CN and CHEM 141-CN (grade of C- or better), or current enrollment in CHEM 131-CN/CHEM 141-CN. View CHEM 142-CN Sections |
Organic Chemistry I <> CHEM 215-A | Foundational concepts in organic chemistry will be introduced.
Topics include structure and properties of common functional
groups, acidity/basicity, conformational analysis, stereochemistry,
and reactivity of organic compounds. The chemistry of hydrocarbons,
alkyl halides, and alcohols, ethers, and carbonyl compounds will be
included. View CHEM 215-A Sections |
Organic Chemistry Lab I <> CHEM 235-A | Standard laboratory techniques in organic chemistry will be
covered. Techniques will focus on the isolation and purification of
organic compounds as well as the use of spectroscopic methods to
determine identity and purity. The results of the technique-based
modules will be communicated by completion of short on-line
worksheets. One complete organic experiment, including reaction
set-up, product isolation, and preparation of samples for
characterization will be performed. The results of the complete
experiment will be communicated in a full formal lab report. View CHEM 235-A Sections |
Organic Chemistry Lab III <> CHEM 235-C | Advanced concepts in modern organic chemistry will be introduced. The material will focus on recent developments in synthetic organic chemistry, including: concerted/pericyclic reactions, catalysis, green/environmental chemistry, automated synthesis, and combinatorial/screening methods. Additional topics will include an introduction to materials and polymer chemistry. This course is required to be taken concurrently with CHEM 215-C. Additionally, while the material in the organic chemistry lecture and lab courses is intended to be linked, students should not expect the lecture and lab content to always align. Prerequisite: completion of CHEM 215-B and CHEM 235-B with a grade of C- or better. View CHEM 235-C Sections |
Scientific Vocabulary Classical Roots <> CLASSICS 110-CN | The intent of this course is to familiarize students with a wide
range of Greek- and Latin-derived words encountered in scientific
and primarily medical fields. Students learn the basic components
and an understanding of the underlying principles of word
formation, which includes acquiring a basic vocabulary of word
roots, prefixes, and suffixes, much of which is a matter of applied
memorization. It also includes analysis of words, aiming at an
understanding of the relationship of their various
components. View CLASSICS 110-CN Sections |
Foundations of Human Movement <> KINS 237-CN | An introductory course examining the biomechanical and physiological factors contributing to the control of human movement. This course concentrates on the biomechanical principles of the musculoskeletal system and how these principles impact global human movements as well as joint-specific movement. It will also encompass the foundational physiology of muscle tissue and how it facilitates movement about a joint. Learning experiences will include self-paced online modules, in-person lectures, laboratories, and task analysis activities to foster the ability to comprehend the foundational principles that drive human movement. View KINS 237-CN Sections |
Interprofessional Health Practice <> PRO_HLTH 390-DL | Interprofessional education is important for preparing health professions students to provide patient care in a collaborative team environment, as an interprofessional approach leads to improved patient outcomes. Interprofessional Health Practice promotes the development of skills and attitudes needed to work effectively in a healthcare community. Through case studies, role play, interactive activities, reflection, and research, students will increase their knowledge in the four core competencies of interprofessional work as outlined by the Interprofessional Education Collaborative (IPEC).
View PRO_HLTH 390-DL Sections |
Professional Health Careers Proseminar I <> PRO_HLTH 396-A | Prohealth Proseminar I will meet during the first fall quarter
of the students’ pre-health program to prepare students to succeed
in the professional health careers program. This proseminar series
will be completed by PROHLTH 396-B: Prohealth Proseminar II in the
students’ final winter quarter. This non-credit course covers
topics including adjusting to life as a science student, academic
resources, extracurricular resources, and preparing for the
professional/medical school application process. There is no
tuition charged for this course.
View PRO_HLTH 396-A Sections |
Professional Health Careers Proseminar II <> PRO_HLTH 396-B | This non-credit proseminar is for students in the Professional
Health Careers certificate programs. This course prepares students
for the year-long application cycle beginning in the summer. This
course will provide opportunities for students to work on major
application components as part of the coursework, including their
AMCAS activities listing, preparing a strong personal statement,
selecting target medical/professional schools, and navigating the
centralized application. The course will also allow students to
practice their interviewing skills and plan for their glide
year.
View PRO_HLTH 396-B Sections |
Introduction to Statistics & Data Science STAT 202-DL | This course provides an introduction to probability and statistics theory and foundational data science applications. The focus will be on the analysis of data using computer software, and the approach is is conceptual—the goal is for students to understand, not to memorize. Important concepts include samples versus populations, normal curves and the central limit theorem, sampling distributions, standard errors, statistical inference, correlation and regression, t-tests, analysis of variance (ANOVA), and the chi-squared test. The replication crisis in science and how bad statistics helped cause it will also be discussed. There are no formal prerequisites for this course. Recommended skills include comfort with basic algebra and some experience with spreadsheet software, such as Microsoft Excel or Google Sheets. This course is conducted completely online. A technology fee will be added to tuition. View STAT 202-DL Sections |